Small RNA Library Preparation Method for Next-Generation Sequencing Using Chemical Modifications to Prevent Adapter Dimer Formation
نویسندگان
چکیده
For most sample types, the automation of RNA and DNA sample preparation workflows enables high throughput next-generation sequencing (NGS) library preparation. Greater adoption of small RNA (sRNA) sequencing has been hindered by high sample input requirements and inherent ligation side products formed during library preparation. These side products, known as adapter dimer, are very similar in size to the tagged library. Most sRNA library preparation strategies thus employ a gel purification step to isolate tagged library from adapter dimer contaminants. At very low sample inputs, adapter dimer side products dominate the reaction and limit the sensitivity of this technique. Here we address the need for improved specificity of sRNA library preparation workflows with a novel library preparation approach that uses modified adapters to suppress adapter dimer formation. This workflow allows for lower sample inputs and elimination of the gel purification step, which in turn allows for an automatable sRNA library preparation protocol.
منابع مشابه
Strategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملStrategies and Clinical Applications of Next Generation Sequencing
Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput sequencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...
متن کاملReduction of non-insert sequence reads by dimer eliminator LNA oligonucleotide for small RNA deep sequencing.
Here we describe a method for constructing small RNA libraries for high-throughput sequencing in which we have made a significant improvement to commonly available standard protocols. We added a locked nucleic acid (LNA) oligonucleotide--named dimer eliminator--that is complementary to the adapter-dimer ligation products during the reverse transcription reaction. It reduces adapter-dimers, whic...
متن کاملSmall-RNA sequencing libraries with greatly reduced adaptor-dimer background
Conventional methods for preparing small-RNA–seq libraries by adaptor ligation generate a significant amount of adaptor dimer, thereby resulting in wasted sequencing reads. These methods also do not capture small 5’-capped and 5’-triphosphorylated RNAs. The ScriptMinerTM small-RNA–seq library preparation technology overcomes these limitations. ScriptMinerTM small-RNA libraries contain greatly r...
متن کاملBrAD-seq: Breath Adapter Directional sequencing: a streamlined, ultra-simple and fast library preparation protocol for strand specific mRNA library construction
Next Generation Sequencing (NGS) is driving rapid advancement in biological understanding and RNA-sequencing (RNA-seq) has become an indispensable tool for biology and medicine. There is a growing need for access to these technologies although preparation of NGS libraries remains a bottleneck to wider adoption. Here we report a novel method for the production of strand specific RNA-seq librarie...
متن کامل